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Kurzfassung 
Entscheidungsfindungen in allen Bereichen des Abfallmanagements im Einklang mit einer 
Kreislaufwirtschaft erfordern von Forschenden den Einsatz fortschrittlicher 
Systemanalysewerkzeuge. Die Materialflussanalyse (MFA) ist eine Methode, die ermöglicht, 
wertvolle Einblicke in Materialsysteme und deren Komponentenverteilung zu gewinnen. Die MFA-
Community ist immer noch auf der Suche nach innovativer Software für die Durchführung 
dynamischer Analysen und komplexer Unsicherheitsbewertungen. ODYM ist ein kürzlich 
veröffentlichter, Python-basierter Ansatz, um einen angemessenen Rahmen für die dynamische 
Modellierung bereitzustellen, der die Anforderungen der Community erfüllt. In dieser Arbeit wurde 
das Potenzial von ODYM, speziell für das Management von organischen Abfällen, untersucht. In 
diesem Bereich wird die Abfallbehandlung häufig mithilfe biologischer Prozesse durchgeführt, 
welche mit herkömmlichen MFA-Methoden wie Flussberechnung mit Transferkoeffizienten nicht 
immer ausreichend beschrieben werden können. Eine fallstudienbasierte Modellierungsvorlage 
wurde entwickelt, um die Eignung von ODYM für die Durchführung dynamischer MFA mit Monte-
Carlo-Simulation, einschließlich der gleichzeitigen Berücksichtigung von organischen Abfallströmen 
und enthaltenen Elementen, zu demonstrieren. Der quelloffene und modulare Aufbau von ODYM 
ermöglichte die Integration eines Models für den Abbau erster Ordnung zur besseren Beschreibung 
von biologischen Prozessen und eine erste Methodik für interaktive Sankey-Diagramme zur 
generellen Erweiterung des ODYM-Ansatzes. Eine ausführliche Dokumentation des 
Arbeitsprozesses wird zur Verfügung gestellt, um die dynamische MFA für das Management von 
organischen Abfallströmen für Forschende zugänglicher zu machen. 

 

Abstract 
Decision-making in all fields of waste management in line with a Circular Economy requires 
researchers to make use of advanced system analysis tools. Material Flow Analysis (MFA) is a 
method that enables obtaining valuable insights into material systems and their component 
distribution. The MFA community is still in search of innovative software for performing dynamic 
analysis and complex uncertainty evaluation. ODYM is a recently published Python-based attempt 
aiming at the establishment of an adequate dynamic modelling framework to satisfy the community’s 
needs. For the thesis, the potential of ODYM specifically for organic waste management was 
investigated. In this field, treatment options often involve biological processes which cannot always 
be sufficiently described with conventional MFA methods like flow calculation with transfer 
coefficients. A case-study-based modelling template was developed to demonstrate ODYM’s 
suitability for performing dynamic MFA with Monte-Carlo-Simulation, including simultaneously 
tracing organic waste flows and contained elements. The open source and modular design of ODYM 
allowed the integration of a first order model approach to better describe biological processes and a 
suggestive methodology for interactive Sankey diagrams to extend the original framework. Detailed 
documentation of the working process is provided to make dynamic MFA in the context of organic 
waste management more accessible for researchers. 
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1 Introduction 
The Circular Economy (CE) concept has grown to be one of the EU’s main strategies to achieve 
climate neutrality by 2050 (European Commission, 2020a). Considering various definition 
approaches, Geissdoerfer et al. (2017) specify CE as “a regenerative system in which resource input 
and waste, emission, and energy leakage are minimized by slowing, closing, and narrowing material 
and energy loops” (ibid., p. 759). The European Commission lists food production and nutrient 
deployment as key product value chains (European Commission, 2020a), making appropriate 
management of organic waste streams an essential factor of its CE approach. Initiating 
circularization of material flows that helps shift toward a more sustainable economy requires an in-
depth understanding of the considered supply chain structures and their interconnectedness with 
the ecosystem (Murray et al., 2017). 

A frequently used method that allows a structured examination of defined systems regarding their 
input and output flows, processes, and stocks is Material Flow Analysis (MFA) (Graedel, 2019). The 
main goal of MFA is to obtain a data-driven model to improve system management, providing useful 
insights for successful decision-making (Brunner & Rechberger, 2016). As an illustration, 
Betz et al. (2015) used MFA to investigate food waste origins in the food service industry, providing 
information regarding relevant process sectors to be optimized for effective food loss reduction. 
Originally only able to describe static systems, research progress over the last 30 years made 
dynamic approaches in MFA a well-established research field (Brunner & Rechberger, 2016). 
Enabling investigation of system changes over time as well as making predictions on future 
developments, dynamic MFA has the potential to be even more helpful in making goal-oriented 
decisions compared to the static approach (Laner & Rechberger, 2016).  

Waste treatment systems, especially those using biological processes, are subject to constant 
fluctuation due to changing waste input streams and process-related variations (Urtnowski-Morin et 
al., 2021; Vergara & Tchobanoglous, 2012; Zabaleta et al., 2020). Thus, choosing a dynamic MFA 
approach might improve the alignment of organic waste management with CE goals.  

A highly popular tool for performing MFA is STAN (subSTance flow ANalysis) (Brunner & 
Rechberger, 2016). In addition to mathematical calculations, it allows plotting results via Sankey 
diagrams. However, consideration of complex time dependencies and differentiated uncertainty 
evaluation of processes cannot be performed with this software (Bornhöft et al., 2013; 
Laner et al., 2014; Pauliuk & Heeren, 2020). To provide a more suitable approach for dynamic MFA, 
Pauliuk & Heeren (2020) introduced ODYM as a Python-based modelling framework. The Open 
software framework for DYnamic Material systems has been published under permissive license 
along with detailed documentation, enabling researchers with a programming background to adapt 
the software for specific purposes (ibid.).  

In this spirit of open science, the thesis explores ODYM‘s potential to serve as a modelling framework 
to develop an extended user-friendly modelling template for describing and investigating treatment 
systems in organic waste management via dynamic MFA. A subdivision into the following derived 
objectives is made: 
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Objective 1  

Introduction of MFA as a concept and presentation of the importance of a dynamic MFA approach 
in waste management. Highlight challenges peculiar to organic waste treatment. Explain the benefits 
and drawbacks of current state-of-the-art MFA software (STAN and ODYM) and examine their 
applicability as a decision-making help in the given field. Introduce the programming language 
Python, as it is used in ODYM.  

Objective 2  

Exhibit the suitability of a case-study-based modelling template for organic waste management using 
ODYM. Evaluate the user-friendliness and adaptability of the template.  

Considering the defined objectives, the thesis is structured as follows: chapter 2 (p. 3) covers the 
state of the science described in Objective 1. Chapter 3 (p. 15) lists all theoretical and practical 
methodologies that have been applied. Chapter 4 (p. 18) introduces the developed template as well 
as case study modelling results. The functioning of the code and the suitability of this approach will 
be discussed in chapter 5 (p. 22), followed by a conclusion in chapter 6 (p. 31).  
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2 Background 

2.1 Material Flow Analysis (MFA): terminology and procedure 
MFA is the study of material flows, stocks, and the inducing processes (Brunner & Rechberger, 
2016). These components are not considered in isolation, the object of investigation is the system 
composed of them (Graedel, 2019).  

MFA is built on the mass balance principle, which states that the system’s input must equal its output 
(Laner & Rechberger, 2016). Considering the mass balance principle as its origin, MFA had its 
starting point already 2000 years ago in ancient Greek philosophy (Brunner & Rechberger, 2016). 
The wide application of mass balancing started in 1900, resulting in the development of MFA with 
application in various areas (Brunner & Rechberger, 2016). Having transformed so comprehensively 
within the course of history, the modern approach of MFA as a method aimed at the provision of 
reliable data on societal material distribution is specified as a field that emerged in the 21st 
century (Graedel, 2019). It is a common approach in various scientific disciplines like environmental 
management and engineering, industrial ecology, resource and waste management, and 
anthropogenic metabolism (Brunner & Rechberger, 2016). Due to this widespread application, the 
language around MFA is not consistent, which aggravates communication between 
researchers (ibid.). In this thesis, the terminology is based on Baccini & Brunner (1991) as presented 
in the Handbook of Material Flow Analysis (Brunner & Rechberger, 2016) and is introduced along 
with more details on methodology using the following example (see Figure 1): 

 

Figure 1: Exemplary Material Flow Analysis system (done with STAN) 
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The system, delimited from the environment by a system boundary in space and time, consists of 
the processes P1, P2 and P3, their relationship specified by flows. Flows can be entering (import: 
F_0_1) or leaving (export: F_3_0) the system boundary, or they can occur within the system between 
processes (input/output: F_1_2, F_1_3). Flows typically have the unit t×year-1 or kg×s-1, fluxes are 
flows over cross-section (e.g. unit t×year-1×capita-1). The system can be investigated on substance or 
good level. Substances can be elements (e.g. carbon) or molecules (e.g. nitrous oxide) and they 
make up goods (e.g. waste). Substances and goods are summarized under the term material. In 
processes, materials can be transported, transformed, or stored. The storage of mass within a 
process is defined as stock (see S2 in P2). To enable simplicity and accuracy at the same time, 
subsystems may be defined. Summarizing processes within a subsystem allows clearly arranged 
presentation of large systems while maintaining the option to look deeper into certain system 
aspects. The most important parameters to specify the allocation of materials to certain flows are 
transfer coefficients (TCs). In the example system, P1 has no stock and due to the mass balance 
principle, F_0_1 must equal the sum of F_1_2 and F_1_3. If 60 % is assigned to F_1_2 and 40 % 
to F_1_3, transfer coefficients would be 0.6 and 0.4. (Brunner & Rechberger, 2016) 

MFA procedure consists of several steps (see Figure 2): 

 

Figure 2: MFA procedure flow chart (based on (Laner & Rechberger, 2016; based on (Brunner & Rechberger, 
2004)) 

 

It is recommended to start with a rough outline and successively make improvements until an 
advanced and informative model is obtained. During the analysis, it might be necessary to go back 
to previous steps to make refinements and adjustments. The MFA results should be checked for 
reliability since the used data, derived from measurements, literature, and estimations, are always 
subject to uncertainty. Building up the quantitative model is usually done with MFA software, two of 
which (STAN and ODYM) will be discussed in chapter 2.3 (p. 10) in more detail. 
(Brunner & Rechberger, 2016) 

Initially, the problem and the goal of the research are defined. Subsequent selection of relevant 
goods, substances, processes, and the definition of a system boundary leads to the build-up of a 
qualitative model. To quantify material flows and stocks within the system, available input data is 
then inserted into the model. (Brunner & Rechberger, 2016)  

Depending on the scope of the data, MFA provides several subsequent calculation options (ibid.): 
1) Unknown quantities can be computed by balancing the system. In the case of the exemplary MFA 
system in Figure 1 (p. 3), F_1_2 could be calculated if F_0_1 and F_1_3 are available, which then 
could be used to calculate TC_1_2 by dividing F_1_2 by F_0_1. 2) If certain aspects of the system 
are overdetermined and the system is solvable, data can be reconciled to better fit the model. All 
measured and estimated data are to some extent occupied with uncertainty, which needs to be taken 
into account. The import flow F_0_1 could be a set value without uncertainty. If the sum of the mean 
values of F_1_2 and F_1_3 is not equal to F_0_1 and uncertainty values are given for these flows, 

Problem and goal 
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Definition of 
system and 

relevant aspects
Data input into 
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they can be adjusted to fulfil the mass balance principle. 3) An overdetermined system can also be 
checked for result consistency. If F_1_2 is calculated as described for calculation option 1) and 
TC_1_2 is also given but they do not match, it might be necessary to check the input data as well as 
the performed calculations. 4) Uncertainty evaluation of the analysis results and the underlying data 
is an essential step in MFA, ensuring its reliability. Using normal distribution by specifying mean 
values and their standard deviation for data is common to be applied in scientific practice (Limpert 
& Stahel, 2011). However, this assumption is not always reasonable, since it can lead to the 
calculation of negative mass flows or TCs (Laner et al., 2014). Limpert & Stahel (2011) demonstrate 
the suitability of the log-normal distribution for published scientific data in various fields like medicine, 
biology, physics, and soil science. The authors of the examined studies used the normal distribution, 
leading to less meaningful results than Limpert & Stahel did by applying the log-normal distribution 
(ibid.). They concluded by asking the question: “Has the normal distribution become too 
normal?” (Limpert & Stahel, 2011, p. 6). Moreover, more specific variants like Weibull, exponential, 
or gamma distribution may be used to refine uncertainty characterization, while the log-normal 
approach may replace the often less adequate normal distribution as an approximation standard 
(ibid.).  

Using uncertain input data inevitably leads to uncertain results, a consequence that can be quantified 
by “uncertainty propagation” (Zhang, 2021). In MFA, Monte-Carlo-Simulation (MCS) is frequently 
used to assess the effects of data uncertainty on the model results (Brunner & Rechberger, 2016). 
MCS includes random sampling of all input variables according to their probability density function 
and running the simulation with the obtained values to see how they influence the outputs 
(Zhang, 2021). Computer-based random number generation is well tested and considered to be 
pseudo-random, since the underlying algorithms are usually reproducible (Harrison, 2010). For each 
run in the MCS, a new set of pseudo-random values for all variables with uncertainty is provided and 
results are collected afterward (ibid.). Approximated probability density functions of output results 
can be generated by analysing the simulation outcome afterward (Raychaudhuri, 2008). To 
determine the number of simulation runs that should be done, it is a common procedure to choose 
a number of runs, and then check if the mean and standard error of the results change significantly 
with additional model runs, or if the scale of deviation is acceptable (Lerche & Mudford, 2005). But 
there are also more advanced methods to estimate the number of runs before starting MCS (ibid.). 
(Brunner & Rechberger, 2016) 

In general, MFA can be subdivided into a static and a dynamic approach (Brunner & 
Rechberger, 2016). Static MFA describes a system snapshot-like at a specific time, while the 
dynamic MFA allows model analysis over time (Laner & Rechberger, 2016). The latter approach 
emerged in the 1990s and is mostly used for stock investigation and creating development scenarios 
(Laner & Rechberger, 2016). For stock calculation, there a two common approaches (see Figure 3, 
p. 6 for the case of a building material).  
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Figure 3: Top-down and bottom-up stock estimation using the example of material in buildings ((Laner & 
Rechberger, 2016) based on (Brunner & Rechberger, 2004)) 

 

The top-down method, frequently used in dynamic stock modelling, balances in- and output flows 
over time, generating stock changes for specific years (Brunner & Rechberger, 2016). Due to the 
lack of actual output data, making use of lifetime functions is a common method to be applied in 
dynamic stock modelling (ibid.), for example, for modelling different scenarios of end-of-life 
passenger cars accumulation in China (Chen et al., 2015). If all in-stock material has the same 
likelihood of leaving the stock at a specific time, leaching coefficients can be used (Voet et al., 2002), 
for instance, for metal leaching in landfills (Laner & Rechberger, 2016). In static MFA, the bottom-up 
estimation is preferred, in which stock is calculated at a specific time by considering all material 
sources within the system. (Brunner & Rechberger, 2016) 

Although dynamic MFA has received growing attention from the research community in the past 30 
years, Brunner & Rechberger (2016) conclude that static MFA will remain relevant. It is often 
sufficient to apply static analysis to describe a system and to grasp its basic characteristics in a 
resource- and data-efficient way. Furthermore, it can be used as a basis for dynamic MFA. (ibid.) 

The final step in the MFA procedure includes the illustration and interpretation of results (Brunner & 
Rechberger, 2016). Sankey diagrams are typically used to display the analysis outcome (Graedel, 
2019). The quantity size of a flow is proportional to the width of the displaying arrows, colours can 
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be used to show additional characteristics of the system (ibid.), including different flows (e.g. 
(Hoogzaad et al., 2019)), the composition of the flows (e.g. (European Commission. Joint Research 
Centre., 2017)) and uncertainty of data (e.g. (Lupton & Allwood, 2018)). Sankey diagrams stand out 
as a comprehensible yet profound method to present MFA results to different audiences like 
industries and governments. Figure 4 shows the analysis results of the anaerobic digestion of 
switchgrass as Sankey diagram (Niu et al., 2015). The researchers tracked nutrient amounts and 
distribution of carbon (C) and nitrogen (N) within the process (the proportion of nitrogen is too small 
to be visible). They concluded that the process is inefficient due to significant amounts of carbon in 
biogas residues, which can be easily understood by looking at the diagram (ibid.). (Brunner & 
Rechberger, 2016) 

 

Figure 4: Sankey diagram of an anaerobic digestion process of switchgrass (modified) (Niu et al., 2015) 

 

For decision making, MFA must be combined with other methods that allow evaluation of the 
obtained results in terms of conduciveness to the set goal (Brunner & Rechberger, 2016). MFA gives 
insight into process flows and stocks, but whether their arrangement in the current system structure 
(or in planned scenarios) is beneficial or not is out of its scope (ibid.). Thus, it is common to combine 
MFA with methods of risk assessment and economic analysis, applying, for example, life cycle 
assessment, which complements the analysis-derived system information with assigned 
environmental effects. (ibid.; Laurent et al., 2014) 

The scope of MFA is variable (Brunner & Rechberger, 2016). A single process (e.g. (Niu et al., 2015) 
for anaerobic digestion) or a system containing several processes (e.g. (Fisher et al., 2017) for sulfur 
flows in wastewater treatment plants) may be investigated, but also material flows within countries 
(e.g. (Alagha et al., 2022) for marine plastic flows in Qatar) or intergovernmental unions (e.g. 
(European Commission. Joint Research Centre., 2018) for different metal flows in the EU-28) can 
be assessed. On an even broader scale, MFA may help uncover the connection between 
anthropogenically induced material flows and natural cycles (e.g. (Rauch & Pacyna, 2009) for global 
metal cycles) (Graedel, 2019). However, MFA depends on the quality of input information, and it has 
been frequently emphasized that the supply of reliable data is one of the major challenges for MFA 
research (Brunner & Rechberger, 2016; Graedel, 2019). Increasing the usability of the MFA 
approach requires the development of openly available and standardized databases for relevant 
input data (Brunner & Rechberger, 2016). Although dynamic approaches have been explored in MFA 
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research for 30 years, another challenge remains the lack of established software for dynamic MFA 
(see chapter 2.3, p. 10) (Pauliuk & Heeren, 2020).  

2.2 Application of MFA in waste management 
Appropriate waste management is a complex field intended to preserve conditions that benefit the 
health of humans and the environment, enable resource efficiency as well as cultivate aftercare-free 
disposal practices to avoid imposing problems on future generations (Allesch & Brunner, 2015). 

MFA is common to be applied in waste management and serves different purposes (Brunner & 
Rechberger, 2016):  

1) Application in waste analysis as an alternative to direct analysis  

Since MFA enables the investigation of flows on good and substance levels, this approach is 
useful for investigating the amount and composition of waste simultaneously. Direct analysis 
(also known as “sample and sort”) is often inefficient, requiring many working hours and 
expensive equipment. MFA can bypass direct analysis either by market product analysis or 
analysis of products of waste treatment (see Figure 5). 

 

Figure 5: Methods of Municipal Solid Waste analysis ((Brunner & Rechberger, 2016) from (Brunner & Ernst, 
1986)) 

 

Market product analysis allows a simple and quick estimation of waste generation using 
production data. It is predestined for scenario development, as production data is generated 
before products are classified as waste. Thus, waste flows can be predicted by considering 
production inflow into society consumption and the lifetime of products. This method is used by 
the US EPA (US EPA, 2002). In addition to production statistics, also sales data can be used, 
as done by Steubing et al. (2009) for computer waste generation in Chile. 
(Brunner & Rechberger, 2016) 

Analysing waste treatment products takes advantage of an inherent objective of waste treatment 
systems, that is: sorting material. Therefore, output flows are usually better characterized than 
unsorted waste. If the input and output mass is known and treatment residues are characterized, 
the waste composition can be calculated via MFA. This approach has been frequently used for 
waste incineration treatment systems. (Brunner & Rechberger, 2016) 
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2) Application in waste management decision-making 

MFA allows analysing and visualizing the current system situation. Results can be used to 
identify problems (as done in the above-mentioned case of the inefficient anaerobic digestion 
process of switchgrass by (Niu et al., 2015)), serve as a basis for scenario assessment, either to 
compare different treatment systems (e.g. (Padeyanda et al., 2016) for different food waste 
treatment options for Daejeon Metropolitan City, Korea) or make predictions regarding future 
developments (e.g. (Lederer et al., 2021) for demolition waste generation in the building sector 
of Vienna, Austria). Additionally, MFA proves as valuable when it comes to system transparency 
since the underlying mass balance principle prevents unintentional or deliberate negligence of 
certain flows in the course of the system processes (e.g. hazardous emissions) (Allesch & 
Brunner, 2015). With its dynamic approach, MFA might help notice problems building up before 
they become too critical (e.g. the future build-up of lithium-ion battery waste from electric vehicles 
(Richa et al., 2014)).  

Even if not much data is available, which will lead to highly uncertain results, formulating different 
scenarios with regard to their likelihood is helpful. The goal of a successful MFA is not coming 
close to eliminating uncertainty, but achieving as much cost-effective reliability as needed, so 
that results can be used as a well-founded basis in decision-making. Due to its relative simplicity, 
making MFA the basis of interdisciplinary communication can be very beneficial. Its results, 
presented with the help of visualization tools like Sankey diagrams, can be understood and 
discussed by various societal fields like politics, the general public, science and industry (Allesch 
& Brunner, 2015). (Brunner & Rechberger, 2016) 

A literature review by Allesch & Brunner (2015) of 83 publications, applying MFA as decision 
support in waste management, revealed that most studies performed the analysis on substance 
level (50 %). 25 % evaluated systems on good level and the remaining 25 % considered both 
levels. Common waste types to be investigated are mainly Municipal Solid Waste and electronic 
waste, but also construction and demolition, biological, plastic, and industrial waste. 47 % of the 
publications aimed at assessing the performance of existing systems, followed by comparing 
different treatment options (20 %), analysing systems for subsequent qualitative interpretation or 
as a basis for evaluation methods like life cycle assessment (13 %) and scenario analysis or 
predictions (20 %). Interpretation of MFA results focused on resource potential, environmental 
effects, and energy performance. A wide variety of system scales was investigated, ranging from 
cities to countries to global contexts. The study demonstrates the importance of MFA for various 
intents of decision-making in waste management. (Allesch & Brunner, 2015) 

Closing material cycles to enable resource efficiency and protection of human and environmental 
health requires trustworthy tracking of hazardous compounds in waste, that is meant to be used as 
a resource in a Circular Economy (CE). CE requires information both on the amount of potentially 
recyclable products of waste treatment systems as well as composition regarding valuable 
substances (e.g. phosphorous in organic waste components for fertilizer use) or hazardous 
substances that hinder recycling (e.g. cadmium in MSW). Furthermore, workers of treatment facilities 
can be protected by considering where critical concentrations and emissions of hazardous 
substances occur within the process. Against the background of CE, the boundary between waste 
and resource management blurs, which broadens the scope for CE researchers from formerly waste-
specific areas to increasingly integrated life cycle and resource-based considerations of 
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anthropogenically used materials. In short, MFA supports appropriate waste management by 
providing information on the waste composition and supporting data-based decision-making 
regarding development scenarios. It is a valuable tool to improve waste management in the context 
of CE. (Brunner & Rechberger, 2016) 

In waste management, studying the treatment of organic wastes via MFA remains a challenge. 
Organic waste treatment often involves biological processes like composting or anaerobic digestion 
(Zabaleta et al., 2020). Due to their complexity and dependency on specific process conditions, like 
temperature, pH, and water content (ibid.), they are subject to significant fluctuations (e.g. (Yu et al., 
2021), (Jie Wei et al., 2016)). Moreover, waste generation may vary in quantity and composition over 
time (Vergara & Tchobanoglous, 2012). To address the significance of time-dependent process 
variations, organic waste management requires adequate dynamic MFA tools (Urtnowski-
Morin et al., 2021). Also, TCs, which are MFA’s main concept to describe material distribution within 
systems, cannot always sufficiently describe complex processes (ibid.). A solution might be 
integrating more specific models into the MFA framework to describe processes within the system 
that exceed the applicability of TCs (ibid.). Urtnowski-Morin et al. (2021) presented the suitability of 
integrating a first-order model and more specific process models as improvement of MFA for the 
case of anaerobic digestion, suggesting the adoption of this approach in other fields of waste 
management.  

2.3 MFA Software 

 STAN 
In 2006, the Technical University of Vienna in cooperation with Inka software released the first 
version of STAN (“subSTance flow ANalysis”) (TU Wien, 2022a). Today, freely available as version 
2.7.101 with over 20.000 registered users (ibid.), it is the most popular tool in the MFA community 
(Brunner & Rechberger, 2016). STAN is frequently used in waste management (TU Wien, 2022b) 
and allows the performance of MFA according to the Austrian standard ÖNORM S 2096 (ASI 
Austrian Standards International, 2005), which regulates the application of MFA in waste 
management (Brunner & Rechberger, 2016). 

Performing MFA with STAN follows the same pattern as the general MFA procedure described by 
(Brunner & Rechberger, 2016) (discussed in chapter 2.1, p. 3) (ibid.). The tool provides a graphical 
interface to develop the model by adding processes, flows, system boundaries, and text fields 
(Cencic & Rechberger, 2008). Both good and substance levels can simultaneously be handled, and 
subsystems can be defined (Brunner & Rechberger, 2016). After system definition, flow values, mass 
fractions, stock values, TCs, or other linear relations can be used as input data (ibid.). Data 
uncertainties can be taken into account by specifying standard errors (e.g. 100 t×year-1 with a 
standard error of ± 10 t×year-1 or 10 %), resulting in normal distribution functions (ibid.), which have 
limited significance in relation to reality (see chapter 2.1, p. 3) (Laner et al., 2014). Other probability 
distributions cannot be applied (ibid.). Given the system definition and input data, STAN can 
generate model results by means of data reconciliation, calculation of unknown data (if possible), 
and uncertainty evaluation using error propagation (Brunner & Rechberger, 2016). Results are 
displayed as Sankey diagrams, integrated into the graphical interface (see Figure 6, p. 11) (ibid.). 
Data can be imported from and exported to Excel (ibid.). 
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Figure 6: Graphical model (left) and Sankey diagram of results (right) of an exemplary system in STAN 
(Brunner & Rechberger, 2016) 

 

There is controversy regarding the question if STAN can perform dynamic analysis, resulting 
primarily from different definitions of dynamic MFA. The software allows system definition for different 
time steps. Stocks from previous periods are added to the current, which the developers call a 
dynamic approach (Cencic & Rechberger, 2008). However, it is not possible to assess systems 
based on continuous functions (e.g. first order decay) (ibid.), which prevents the calculation of 
complex dynamic stock behaviours (Bornhöft, 2017). Stock behaviours that cannot be studied with 
STAN can be as simple as the example given by Bornhöft (2017), in which material stays in stock 
for several periods and is released at a specific rate per year afterward. Depending on the use case, 
researchers 1) used the period function as dynamic MFA (e.g. (Bonnin et al., 2012)), 2) used the 
period function and modelled the dynamic stock manually with subsequent entry of specific results 
into STAN (e.g. (Bornhöft, 2017)), 3) used STAN to calculate the steady-state situation and then 
applied the obtained results (e.g. TCs) in dynamic MFA in Excel (e.g. (Pivnenko et al., 2016)) or 
other tools (e.g. (Kawecki et al., 2021)).  

STAN is an accessible and freely available program for performing fundamental aspects of MFA. It 
is a well-established tool within the MFA community and has been applied in many scientific projects. 
Still, it has limitations regarding dynamic analysis and advanced uncertainty evaluation.  

 ODYM 
In an approach to provide a solution for the problems that researchers face with popular MFA 
software like STAN, Stefan Pauliuk & Niko Heeren released the Open software framework for 
DYnamic Material systems (ODYM), written in the programming language Python, in 2020 (Pauliuk 
& Heeren, 2020). It has not been extensively applied in published literature and due to the lack of 
independent reviews, the presentation of ODYM in this chapter is mainly based on the paper of the 
developers. A general search in Google Scholar and a more specific search in the 

150 Handbook of Material Flow Analysis

• The results of the MFA are displayed as Sankey-style diagram. The 
graph can be printed and exported in various graphical formats.

• Data can be exported using MS Excel as an interface.
• The database of STAN !les on http://www.stan2web.net can be 

accessed directly from the user interface of STAN.

In the following, three examples are presented that are subsequently mod-
eled and analyzed with the help of STAN. After each example description, 
!rst, the required features of STAN are explained, and second, detailed 
instructions on how to implement the examples are provided, indicated by 
the  sign.

Example 2.23 demonstrates how to build a graphical model, enter data, 
and perform a calculation.

Example 2.23

The model in Figure 2.50 shows the simpli!ed material "ows and stocks 
in a region XY related to a product under investigation: Imported raw 
materials (RA) and intraregional recycling material (RE) are used to 
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FIGURE 2.50
Material "ows, stocks, and processes of region XY, 2016 (main system).
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Numerical results of MFA in region XY, 2016 (main system).
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“Journal of Industrial Ecology” revealed only a few papers that mention or use ODYM, most of them 
with the software developers as main- or co-authors. 

The main motivation for the development of the tool was to establish a modelling framework for data-
intensive investigation of complex problems, taking advantage of the intrinsic simplicity of MFA 
(Pauliuk & Heeren, 2020). ODYM only requires the fulfilment of the mass balance principle and the 
provision of suitable model data, within this framework, many aspects of systems can be explored. 
With ODYM, different materials, substances, regions, and periods can be simultaneously and 
dynamically investigated, while enabling advanced uncertainty evaluation of modelling data. (ibid.) 

According to Pauliuk & Heeren (2020), the unavailability of appropriate, adaptable software led to 
the situation that MFA is applied by using various practices. This prevents researchers from working 
together successfully. Thus, ODYM provides a uniform data format to better facilitate cooperation 
between research teams. Enabling adaptation and at the same time providing a standardized 
modelling framework requires establishing a delicate balance between what the authors call 
“flexibility” and “rigidity”. In order to clearly structure the large number of possible system aspects, 
the software provides a structure that determines how information has to be inserted into the model 
database. (Pauliuk & Heeren, 2020) 

ODYM is published as Free and Open Source Software (FOSS) (ibid.), which allows the reuse of 
the code within the scope of its license conditions (Manabe et al., 2014; Open Source Initiative, n.d.). 
While sometimes the provision of software packages with different FOSS licenses complicates the 
reuse (Manabe et al., 2014), ODYM is published exclusively under the MIT permissive license 
(Pauliuk & Heeren, 2020). It grants permission to “[…] deal in the Software without restriction, 
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, 
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so 
[…]” (Open Source Initiative, n.d.). The only condition is to indicate the copyright notice along with 
the permission notice (ibid.). In contrast to popular MFA software like STAN, this allows researchers 
to adapt the software to fit their specific needs. In addition to allowing modification of the framework, 
ODYM’s modular programming structure is even intentionally designed to support adaptation 
(Pauliuk & Heeren, 2020). Modular software consists of different parts that are at least to some 
extent independent of each other (Dennis, 1975). They can be combined as needed to address a 
particular problem, without having to change the code or make use of all software modules (ibid.). 
Modularity also enables combining software modules with independently written code to modify and 
extend the provided program (ibid.). To serve as a tool to solve different scientific problems in various 
fields, modularity must be considered while writing the code (Kang et al., 2012), which has been 
done in the case of ODYM (Pauliuk & Heeren, 2020). Thus, modularity enables not just considering 
only the parameters and model aspects that are relevant but also adapting the framework, like 
adding a first-order model for biological processes that cannot always be described by the use of 
TCs, as suggested by Urtnowski-Morin et al. (2021).  

Other features of ODYM are automatic consistency and mass balance checks. More specific 
explanations regarding essential features as well as ODYM’s modelling structure will be provided in 
chapter 5.1 (p. 22), based on the template version developed for this thesis. (Pauliuk & Heeren, 
2020) 
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The software code with explanations along with extensive documentation in form of a Wiki and 
exemplary tutorials can be accessed via a GitHub repository (Pauliuk & Heeren, 2022). 
Tutorial No. 5. demonstrates ODYM’s suitability for performing extensive dynamic MFA by modelling 
the global passenger vehicle fleet in 2017, considering the period 1990–2017, 130 countries, 
relevant processes, and various materials (like steel, Al, plastics, …) (ibid.). For the calculation, 
integrated dynamic stock modelling functions are used, which allow the determination of the stocks 
with the help of lifetime functions (ibid.). The example also includes a Monte-Carlo-Simulation (MCS) 
for evaluating the uncertainty regarding the material content and the lifetime of the vehicles (ibid.). 
Nonetheless, ODYM does not provide a built-in procedure for MCS, this part of the analysis must be 
manually programmed depending on the specific use case (Pauliuk & Heeren, 2020). In addition, 
built-in options for visualization of model results via Sankey diagrams have also not been 
implemented yet (ibid.). Finally, due to the lack of a graphical user interface, ODYM requires 
programming skills for its usage. 

ODYM is a recently published approach to facilitate dynamic MFA of complex systems. It provides 
a framework for the analysis as well as tools for dynamic stock modelling. The software is free and 
open, allowing researchers familiar with Python to fit the software to their needs, such as adding 
specific process models, advanced uncertainty evaluation, and MCS. Although there are other 
Python MFA tools (e.g. PYMFA 2.1 (Thiébaud, 2019) or DPMFA (Bornhöft, 2017)), ODYM stands 
out as an approach designed for adaptation as an open science tool. 

2.4 Programming in Python 
Python is a prevalent programming language, which was released in 1991 (Lubanovic, 2014). Today, 
it is used in various fields like data science, artificial intelligence, game development, and scientific 
research (Rolon-Mérette et al., 2020). Users range from private individuals to scientists to employers 
at companies like Google, YouTube, or Netflix (Lubanovic, 2014; Rolon-Mérette et al., 2020). Python 
is free and open source, running on all common operating systems (Windows, Mac, Linux, Ubuntu) 
with low computational power demand (Rolon-Mérette et al., 2020).  

Compared to other programming languages, its structure is considered to be easy to learn 
(Lubanovic, 2014). Besides being accessible, a highly beneficial aspect regarding Python’s potential 
is the large and active community of users (Rolon-Mérette et al., 2020). The Python online 
community provides support for all levels of programmers in the entirety of the field:  

1) There are large numbers of tutorials, many of them free, in the form of text documents, online 
courses, and videos to begin programming, but teaching material is also provided for complex and 
more specific topics (e.g. machine learning for medical data (Bloice & Holzinger, 2016)) (Rolon-
Mérette et al., 2020).  

2) Programmers can make use of previous efforts by using ready-to-use software or pre-written 
code (“packages”), targeting programming procedures common to many different application 
fields (ibid.). For example, if one would like to access data from a Microsoft Excel spreadsheet for a 
Python project, there is no need to write the whole code to do so, one can use, for instance, the 
package pandas (McKinney & Team, 2015). Instead of having to start from scratch by developing 
an interface between Excel and Python, one can conveniently use the pandas formula 
read_excel('Example.xlsx') to import data from a spreadsheet into a Python project.  
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With pandas, users can handle analysis and manipulation of databases like Microsoft Excel directly 
in Python (ibid.). Further popular Python packages in scientific research are NumPy (array calculation 
for efficiently processing large sets of data), SciPy (statistics, optimization, …), and SciKit (machine 
learning) (Lubanovic, 2014).  

3) Python developers can provide and ask for support in various online forums. Reusing software 
snippets from web pages, tutorials, and forums, also known as Amethodical Snippet Remixing, is a 
common practice in software engineering (Philip et al., 2012). However, recent studies raised 
awareness of potential quality and security issues, advising researchers to be careful with using 
code snippets found on the popular forum Stack Overflow (Bafatakis et al., 2019; Rahman et al., 
2019). Another very helpful tool is GitHub (Yang et al., 2017). While forums are dominated by Q&A 
discussions, the social coding website is intended to allow sharing code and exchanging ideas about 
it (ibid.). Combining repository characteristics with interaction tools capable of tracking, discussing, 
and resolving software issues, GitHub enables software development as a collaborative effort (Ma 
et al., 2017).  

Writing and running Python code requires suitable development environments, like text editing 
requires software like Microsoft Office Word or OpenOffice (Rolon-Mérette et al., 2020). Anaconda 
is a program that provides tools for scientific programmers (ibid.), with the most common packages 
being pre-installed (others can be added) (ibid.). One offered tool is Jupyter Notebook (Randles et 
al., 2017). It contains cells, that can display code, code outputs, and text, which makes it suitable for 
providing ready-to-use code with explanations in a transparent way, allowing gradually building up 
the tool with consecutive code blocks in a document-like style (Kluyver et al., 2016; Mendez et al., 
2019; Rolon-Mérette et al., 2020). 

An increasing quantity of data requires researchers to make use of adequate software to investigate 
scientific research questions (Kadiyala & Kumar, 2017). Python and associated tools like Anaconda, 
GitHub, and Jupyter Notebook offer a suitable environment for scientific programming.   
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3 Materials and Methods 

3.1 Theoretical Methodologies 

 Literature Research 
The work process was initialised by extensive literature research regarding MFA in general, its 
significance for waste management, and MFA software. The Handbook of Material Flow Analysis 
(HOMFA) (Brunner & Rechberger, 2016) served as an entry point for the research. It offers a 
comprehensive and detailed overview of MFA and associated engineering fields (e.g. waste 
management), MFA methodology, and practical case study applications to provide an extensive and 
at the same time practical manual for engineers (ibid.). The research was then expanded by using 
the snowballing method. The HOMFA refers to various research literature, which was systematically 
checked for other relevant references. The procedure was analogously applied multiple times for 
resulting publications (“snowballing”) (Rosert, 2009). For important sub-topics (e.g. statistics, Sankey 
diagrams), more specific literature was consulted. To further specify the requirements for MFA in 
organic waste management and the current state of research, systematic online research on specific 
topics complemented the snowballing procedure. To emphasise the relevance of the presented 
scientific background, example studies are cited that apply the described methods. They have been 
found via keyword online search. 

In combination with studying papers where STAN has been used as a research tool, HOMFA’s 
chapter on the software is used to introduce the tool. The presentation of ODYM is mainly based on 
the associated publication (Pauliuk & Heeren, 2020). 

In the further course of the thesis, the obtained state of the science is linked to the developed ODYM-
based modelling script to discuss the applicability of the thesis’ template in the field. 

3.2 Practical Methodologies 
The template was developed on a MacBook Pro (Early 2015) with a 2,7 GHz Dual-Core Intel Core 
i5 Processor, 8 GB 1867 MHz DDR3, macOS Monterey Version 12.2.1. 

 Jupyter Notebook 
Jupyter Notebook version 6.4.11 has been used to write the code. Also, the modelling template is 
provided as a Jupyter Notebook. 

 Case study 
To present the features of the template, a case study system was modelled (see Figure 7, p. 16). It 
includes agricultural wheat production, subsequent treatment of residues (wheat straw), and the 
effect on the atmosphere, surface water, and aquifer and soil. The aim was to obtain information on 
the impact of the application of agricultural residue treatment products as soil conditioner on the 
carbon stock of the soil. Incorporation of crop residues and the use of treatment products like 
compost can help reduce carbon losses of soils and thus, ensuring soil fertility (Tiefenbacher et al., 
2021). As discussed in chapter 2.2 (p. 8), CE requires waste management to also study more 
resource-based topics increasingly. Therefore, not only waste treatment, but also the application of 
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process products as a potential resource for agricultural use is covered. For the analysis, the system 
is investigated on good (biomass from agricultural production) and substance level (carbon) and is 
dynamically modelled for the years 2020 until 2040.  

 

 

Figure 7: Case study MFA system including agricultural production (green), waste treatment (blue), and 
sequestration processes of soil conditioner products (red) 

 

The carbon sequestration processes in the soil are calculated with a first order decay model 
according to Cayuela et al. (2010) based on Robertson & Paul (2000):  

 

 𝐶!"#$%&%&'(𝑡) = 𝑓 ∙ exp(−𝑘(𝑡) + (100 − 𝑓) ∙ exp	(−𝑘)𝑡) (1) 

 

Organic matter consists of a wide variety of substances with different properties and carbon 
mineralization behaviours (Taneva et al., 2006). To address these variations, this type of modelling 
usually distinguishes between different pools that degrade with distinct decay rates (ibid.). In 
Equation 1, 𝑓 is the fraction of carbon of the fast turnover pool, 𝑘(is the decay rate parameter for the 
fast turnover pool, 𝑘)	is the corresponding parameter for the slow turnover pool, 𝑡 is the process time 
in days (Robertson & Paul, 2000). The data for wheat straw is obtained from Cayuela et al. (2010): 

Table 1: Sequestration formula data for wheat straw (Cayuela et al., 2010) 

Residue type 𝒇 [%] 𝒌𝟏[day-1] 𝒌𝟐[day-1] 

Wheat straw 4.8 0.1975 0.0027 
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To keep the case study simple, other biological processes like anaerobic digestion and composting 
are described with TCs. Additionally, it is assumed that only the sequestration leads to soil outflows, 
the remaining fractions of the good accumulate as stock without any emissions. Also, the compost 
outflow is considered to have the same sequestration behaviour as the unprocessed wheat straw. 
Known input data are good and carbon imports from the cultivation, TCs for all processes (except 
soil carbon sequestration processes), and standard deviation of all given values (2 % for flows, 5 % 
for TCs and first order model parameters). Import flow and TC data can be viewed in Annex A (p. 39). 

Analysis results should be displayed as Sankey diagrams and uncertainty evaluation is to be 
performed via Monte-Carlo-Simulation (Number of Monte-Carlo runs (NMC) = 10,000) with log-
normal distribution of all input data as approximation standard. The case study input data are 
arbitrarily chosen and are only meant to demonstrate the template procedures. The open source 
vector graphics editor Inkscape (Inkscape Project, 2022) has been used for post-processing Sankey 
diagrams for presentation purposes (see Figure 9, p. 19), as suggested by Pauliuk & Hasan (2017). 

 Documentation 
Documentation of the tool is provided using four methods: 

1) The MFA procedure flowchart, introduced in chapter 2.1 (see Figure 2, p. 4), is used to present 
and explain the different modelling steps since the template has been structured in line with the 
flowchart. This part of the documentation can be found in the discussion chapter 5.1 (p. 22). 

2) Unified Modeling Language (UML) provides different tools and methods, that are meant to support 
analysis, design, and implementation of software (Object Management Group, 2017). It is not a 
programming, but a frequently applied graphical modelling language, used in all steps of software 
development (Seemann & von Gudenberg, 2006). For this thesis, a UML use case diagram was 
developed to illustrate which features of the template are inherent to ODYM and which are 
customized extensions. The UML figure can be accessed in the results chapter 4 (p. 18) with further 
explanations in the discussion chapter 5.1 (p. 22).  

3) Practical notes on how to use and adapt the tool can be found directly in the modelling template 
as comments. 

4) A graphical and abbreviated interpretation of the explanations of documentation method 1) is 
provided to offer a structural overview as quick-start guide for the template. It is included in Annex C 
(p. 44) and in the GitHub repository of the biODYM modelling template (see results chapter 4 (p. 18)). 
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4 Results 
The biODYM modelling template adapts ODYM for performing dynamic MFA in organic waste 
management. The results of the developing process are available via a GitHub repository 
(https://github.com/lukashpe/biODYM-modelling-template). It includes the following files: 

• biODYM modelling template as Jupyter Notebook 
• Excel input data template  
• biODYM quick-start guide 
• Copy of the original ODYM as of 20th of June 2022  
• Case study modelling results of biODYM as Excel export  
• Case study modelling in Excel to confirm biODYM results 

biODYM is, like ODYM, published under the permissive MIT license, allowing users to use, adapt 
and distribute the template without restrictions (see chapter 2.3.2, p. 11). biODYM is capable of: 

• Dynamic analysis with time-dependent transfer coefficients and input data 
• Simultaneous investigation of good and substance level 
• Integration of biological first order model processes (FOMPs) 
• Monte-Carlo-Simulation (MCS) 
• Export of MFA results to Excel 
• Interactive Sankey diagrams 

The added features (first order model, MCS, interactive Sankey diagram, Excel export) are directly 
included in the template. Figure 8 presents the UML use case diagram of biODYM. 

 

Figure 8: biODYM modelling template UML use case diagram 
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The structure of the template follows the general procedure of ODYM and is inspired by the tutorials 
provided along with the ODYM package. biODYM includes modelling a case study system that 
presents the used ODYM functions as well as the added features (see chapter 3.2.2, p. 15). Here, 
only figures for carbon are displayed, total results can be accessed in the modelling template: 

 

Figure 9: Screenshot of interactive Sankey diagram on carbon level for the year 2021 (modified) 

 

Figure 9 shows a screenshot of the interactive Sankey diagram on carbon level for the year 2021. 
In the notebook, a slider is used to switch between years. Figure 9 has been modified on vector 
basis, so that the output flows of the “Harvesting” process do not overlap. From “Straw c&d” on, 
overlapping cannot be avoided without taking up significantly more space for the diagram system 
structure. With the interactive Sankey diagram in the template, however, each flow can be clearly 
characterised: hovering with the curser on a flow, it is highlighted, and its source and target process 
and the mass values are displayed. 

MCS (Number of Monte-Carlo runs (NMC) = 10,000) results are shown in Figure 10–Figure 13 for 
the carbon inflow to (Figure 10 & Figure 11, p. 20) and the stock in (Figure 12 & Figure 13, p. 21) 
the soil. The simple plot displays all model runs as separate lines, whereas the violin plot shows 
mean values (white dots with orange line), data ranges (whiskers), upper and lower quartile (black 
boxes), and probability density functions (“violin body”). 
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Figure 10: Plot carbon inflow to soil (NMC =10,000) 
 

 
Figure 11: Violin plot carbon inflow to soil (NMC = 10,000) 
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Figure 12: Plot carbon stock in soil (NMC = 10,000) 

 

 
Figure 13: Violin plot carbon stock in soil (NMC = 10,000) 
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5 Discussion 

5.1 How does the biODYM modelling template work? 
The template presents essential features of ODYM and is complemented by specific biODYM 
extensions. The extensions are directly written into the notebook and not woven into the ODYM code 
or provided as a separate package, the latter two options being the usual coding style. This is done 
to enable simple modification and to visualize their structure without having to look at class or 
function files. Also, the extensions are not developed enough to be used as a separate Python 
package, since they need to be modified for different use cases. It is, for example, not possible to 
use the integrated Sankey diagram option as simple as the pandas formula 
read_excel('Example.xlsx') (see chapter 2.4, p. 13). There is a one-line formula 
sankey_diagram_results(flows_Values_loop, element) but it requires input data that has 
been processed by manual coding (for details see template section 4.2). Programming general 
Python packages or professional software is an enormously complex and lengthy process 
considered to be out of the scope of this thesis. The extensions are practical and working means to 
explore ODYM’s potential for adaptations, including specific ones (first order model) but also 
suggestion stimuli for general improvements for future versions of the framework (interactive Sankey 
diagrams). 

The developing process of biODYM was based on the ODYM tutorials provided in the GitHub 
repository of the tool (Pauliuk & Heeren, 2022). In fact, the template could be thought of as another 
ODYM tutorial addressing more specific functions helpful for organic waste management, but also 
suggesting general improvements. Due to the framework’s modular design, looking through various 
tutorial application cases enabled easy adoption of procedures to biODYM and modifying them to fit 
the case study’s needs. Especially starting steps, like defining the system, setting a modelling period, 
and choosing relevant system aspects, usually include the same initiating routines. Presenting the 
intended data structure in the tutorials also made transparent at which points and how extensions 
can be included. The developers themselves sometimes added calculation steps that have not been 
implemented yet into ODYM as inherent features (e.g. MCS in Tutorial No. 5.). The detailed 
documentation including the introduction paper (Pauliuk & Heeren, 2020), a Wiki page, tutorials, and 
detailed explanations enabled a straightforward working process for this thesis, making ODYM a 
prime example for open science. 

In the background on MFA terminology and procedure chapter 2.1 (p. 3), the MFA procedure flow 
chart (see Figure 2, p. 4) has been introduced and is now used to explain what the template does 
stepwise. It should be noted that ODYM is a large modelling framework with many functions (see 
chapter 2.3.2, p. 11). Here, only the features included in the bioODYM modelling template are 
explained. Nevertheless, other ODYM features can be implemented if needed. In the original flow 
chart, the steps were deliberately unnumbered to emphasise the iterative character of MFA. For 
reasons of clarity, numbers are given for them in the following section: 

0 Problem and goal definition/Load packages 

Problem and goal of the study must be defined before starting the analysis with biODYM. For the 
case study, this has been done in the materials and methods chapter 3.2.2 (p. 15). Instead, the 
template starts with an introduction, and the first coding cell loads ODYM and its required packages 
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as well as additional packages that were used for the adaptions. A local copy of ODYM as of the 20th 
of June 2022 is loaded (included in the biODYM repository) to assure that the template keeps 
working even after major updates on the original version. Still, it is unlikely that changes will affect 
the general functions of ODYM to this extent and the original framework may be used just as well. 
Furthermore, the framework requires the following packages: 

• sys 

• os 

• pandas 

• matplotlib.pyplot 

• pickle 

• pylab 

Additional packages are: 

• matplotlib.ticker (plotting) 
• plotly.graph_objects (interactive Sankey diagram) 
• ipywidgets (interactive Sankey diagram) 
• xlsxwriter (results export to Excel) 
• scipy.stats (MCS) 

 

1 Definition of system and relevant aspects 

In this section, the qualitative model is developed. The model period, relevant goods and substances, 
processes, flows, stocks, and stock changes are defined. The outcome could be likened to the 
graphical model of STAN (see Figure 6 (left), p.11). Instead of graphical symbols, ODYM uses lists, 
tables, dictionaries, and arrays to store information. System aspects (for the case study time and 
element) are stored in an index table. Each component (process, flow, stock) is defined by specific 
attributes: Processes receive an ID and are stored in a list, the IDs are then used to define where 
flows and stocks occur. Indices, referring to the index table, indicate the dimensions (time and/or 
element dependence). In the template, goods and substances are both called elements. Flows and 
stocks along with their attributes are stored in separate dictionaries FlowDict and StockDict. At 
the end of the section, a value array filled with zeros as placeholder according to the given dimension 
is assigned to each flow, stock, and stock change. For the case study, the arrays have the shape 
(21, 2), corresponding to the number of analysis years and elements (total biomass and carbon) (see 
Figure 14, p. 24). They are used to store and compute results in the further course of the analysis. 

Component values and corresponding calculations are completely built upon arrays, and the 
considered system aspects define their dimension. For instance, if additionally, three different 
regions, applying the same treatment process, should be compared in the MFA, the dimension of 
the arrays would be (21, 3, 2). The index table would then list time, region, and element as system 
aspects. 

 



Dynamic Material Flow Analysis for organic waste management in Python 

 24  

 

Figure 14: Exemplary empty array for the case study dimensions 

 

The ODYM data structure is responsible for its analytical power. When the system is defined, any 
calculations can be performed with Python coding. The modelling framework is not limited to a given 
set of calculation functions (like e.g. STAN). Results must only fit the ODYM data structure at the 
end of the calculations. The user is free to explore the whole range of Python’s potential. Admittedly, 
this also challenges user-friendliness, which will be further discussed in the next chapter 5.2 (p. 27). 
Pauliuk & Heeren (2020) consider ODYM’s data structure the most relevant novelty for the MFA 
community.  

 

2 Data input into model 

Given data is imported from the Excel template. In the case study, import flows on both levels, TCs 
on both levels, and relative standard deviation for all values are given. Standard deviation is specified 
by default values defined in the sheet “relSTD_default” but can be manually changed for individual 
flows and stocks. The data import is followed by inserting the data into ODYM’s data structure. Input 
data is assigned into a parameter dictionary ParameterDict and empty value arrays get created 
analogously to the procedure for StockDict and FlowDict. In addition to values, the relative 
standard deviation is also stored. The Excel template and the code that facilitates the import can be 
modified to fit other research questions. 

After defining the system and inserting input data into the model, ODYM enables an automatic 
consistency check, which checks if dimensions have been used consistently and if flows have been 
assigned only to existing processes. This feature allows definition errors to be found quickly. The 
absence of a graphical user interface makes it more difficult to develop the qualitative model, the 
consistency check is a way to compensate for this complication. 

At this point, the qualitative MFA system is defined, and an ODYM-compliant memory of all input 
data has been created. In the next step, analysis results are calculated. 
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3 MFA Calculations 

Calculations start with computing results that do not depend on first order model processes 
(FOMPs). In the case study, all flows (except F_0_1, which is given and directly inserted into 
FlowDict) are calculated via TCs: 

 𝐹_𝑦_𝑧 = 𝐹_𝑥_𝑦 ∙ 𝑇𝐶_𝑦_𝑧 (2) 

 

The arrays of flows and the TCs are combined via the Hadamard product, which allows the 
multiplication of same dimension matrices according to the scheme: 
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; 

 

(3) 

 

This is very practical and is applied throughout ODYM. Calculations don’t have to be repeated for 
each element and year, they are performed simultaneously.  

Other formulas for flow computing can be applied, depending on the input data. If, for instance, TCs 
on good level are known, but only mass fractions 𝑥 on substance level are given, the flows 𝐹 for 
substances could be calculated via: 

 𝐹-./-0$&1" = 𝐹'223 ∙ 𝑥-./-0$&1" (4) 

 

Another option that has been applied frequently in the ODYM tutorials (Pauliuk & Heeren, 2022) is 
dynamic stock modelling with lifetime functions (see chapter 2.1, p. 3). The Excel template only 
presents the first option via TCs, but other approaches like those mentioned can be integrated.  

In the case study, annual stock changes (𝑑𝑆(𝑡)) correspond to the difference of inflow (𝐹%(𝑡)) to 
outflow (𝐹2(𝑡)), the actual stock is then calculated by summing up all stock changes: 

 𝑑𝑆(𝑡) = 𝐹%(𝑡) −	𝐹2(𝑡) (5) 

 𝑆 =?𝑑𝑆(𝑡) (6) 

 

The calculations of FOMPs are separated from the standard ODYM procedure. The associated 
parameters are stored in a separate dictionary BioParameterDict. Values and uncertainties are 
inserted manually into the notebook and not imported via the Excel template. The goal behind this 
approach is not to intervene with ODYM’s complex structure and obstruct it in any way. After 
calculating the part of the system independent of FOMPs, the standard ODYM procedure is put on 
pause, a new model is defined with separate practices to calculate FOMPs and the results are fitted 
to ODYM’s data structure and then the ODYM procedure is continued. This technique can be applied 
to any number of FOMPs in a system. The first order model is also built upon array calculations. 

...	

Elements	

Years	

F_x_y	 TC_y_z	 F_y_z	
...	 ...	
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Extensive looping through each year and element to apply the exponential function is more intuitive, 
but very inefficient. With regard to the MCS (where calculations are run 10,000 times), a fast 
approach had to be chosen. The first order exponential function is used to calculate the relative 
course of the decay process through the years (𝑑4"$!), which can then be used for all cohort inflows 
𝐹%1. The computation follows:  

 

 
9
𝐹%( 0 0
𝐹%( 𝐹%) 0
𝐹%( 𝐹%) 𝐹%,

; ∧ 9
𝑑(
𝑑)
𝑑,
; = 9

𝐹%( ∙ 𝑑( 0 0
𝐹%( ∙ 𝑑) 𝐹%) ∙ 𝑑( 0
𝐹%( ∙ 𝑑, 𝐹%) ∙ 𝑑) 𝐹%, ∙ 𝑑(

; (7) 

   

𝐹%( is the inflow into the FOMP in year 1 and the first column of the result array represents the first 
order decay of this inflow cohort. 𝐹%) is the inflow in year 2, which is not yet present in year 1, thus, 
the decay process starts in year 2 with 𝑑(. In the case study, summing up each row of the result 
array leads to the total stock of the process in each year, since the applied exponential equation 
(Equation (1), p. 16) represents the share of remaining carbon during the sequestration process. 
However, this calculation approach is not limited to stock calculations. For instance, a first order 
model that represents emissions could also be used (e.g. first order model for methane emissions 
from landfills (Towprayoon et al., 2019)). Summing up array rows would then represent the annual 
emission outflow of the process.  

In the case study, after computing the soil stock and stock change for each year, Equation (5) (p. 25) 
is rearranged to obtain the outflows:  

𝐹2(𝑡) = 𝐹%(𝑡) − 𝑑𝑆(𝑡)	 (8) 

 

Results are then inserted into StockDict and FlowDict. 

Before the MCS is done, ODYM provides an automatic mass balance check that reports the balance 
dimension and all absolute balancing errors per process. For the case study, the balance dimension 
is (21 time steps, 12 processes, 2 elements) and no significant errors are reported (specified are 
only balancing errors with an order of magnitude smaller than 105()	due to computer hardware 
arithmetic (Python Software Foundation, 2008)). 

The MCS in essence repeats all the preceding calculations but introduces another dimension: 
according to the given standard deviation and, assuming a log-normal distribution for each 
parameter, 10,000 pseudo-random values are drawn. The dimension of the arrays is now (10,000, 
21, 2) and they are stored in separate MCS dictionaries. The calculations done to compute the initial 
results are then repeated but with the MCS dictionaries and flow and stock results (now also in the 
dimension (10,000, 21, 2)) are again separately stored. More specific distributions functions like 
Weibull or gamma distribution can be integrated into the template. The simulation closes by 
calculating the absolute standard deviation for all stock and flow values for the Excel export. 

Building the code on array calculations, the complete MCS with generating pseudo-random values 
and repeating all calculations with three-dimensional arrays takes as much time as running the first 
discarded looping FOMP approach just once (on average around 5-9 µs). 

Years	

Cohort-Years	
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4 Presentation (+ Interpretation) of results 

All flows and stocks can be plotted via simple plots. In the case study, the inflow into the soil and the 
stock development of the soil over the years on good and carbon level are plotted. 

ODYM originally does not include procedures for integrated Sankey diagrams (Pauliuk & Heeren, 
2020). The biODYM modelling template includes a first approach to provide an option for dynamic 
and interactive Sankey diagrams. The method makes use of ODYM’s dictionaries and extracts all 
information needed to build the diagram. Then, the ipywidget package together with the plotly 
package is used to create plots that can be controlled with a slider to present annual results. Although 
there have been Python-based innovations for Sankey diagrams (e.g. hybrid Sankey diagrams 
(Lupton & Allwood, 2017)), the author is not aware of any published methods for interactive Sankey 
diagrams in Python. The developed approach is inspired by an application of the European Union’s 
statistical office that visualises material flows within the EU as an interactive Sankey diagram (with 
many more details) (European Commission, 2020b). In its current version, the interactive Sankey 
diagram option of biODYM needs to be modified for other problems (more elements, comparing 
regions, …), but the general procedure could be applied to any MFA problem. Further developed 
and refined, it could be implemented into the ODYM framework as an easy visualization feature for 
MFA results in all fields.  

MCS results are displayed as violin plots and simple plots of all model runs. 

In a last step, MFA results of all flows and stocks are exported to Excel. Additionally, mean values 
and absolute standard deviation of the MCS are also exported as a separate file. Although ODYM 
provides exporting options, an individual method has been developed that fits the structure of the 
used Excel template. 

Interpretation of the MFA results is not included in the template. 

The case study calculations have been confirmed by calculating the MFA in Excel by hand. Profound 
model validation and extensive testing are considered essential next steps.  

5.2 Considerations on suitability 
The thesis is meant to evaluate the suitability of ODYM to develop a user-friendly modelling template 
for the application in organic waste management. Thus, the question is not just if ODYM can be 
applied in the field but also how approachable and adaptable an ODYM-based modelling template 
is: 

1. Application in organic waste management 

The results show that ODYM is a thoughtful modelling framework, providing a profound data 
structure without hindering Python’s immense potential for scientific programming. It combines two 
aspects, which Pauliuk & Heeren (2020) call “flexibility” and “rigidity”, to allow complex material flow 
problems to be investigated in a well-defined and standardized MFA environment. For the application 
in organic waste management, ODYM’s modular design allowed easy extraction of the needed 
features as well as adding an efficient first order model approach. Furthermore, interactive Sankey 
diagrams and a case-study-specific MCS have been included. Of course, the developed template 
does not nearly cover all possible scenarios for MFA in organic waste management. In particular, 
the input data is highly case-specific, making template adaptations inevitable. biODYM demonstrates 
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that ODYM can be applied in all steps of MFA that are usually supported by software and that a case 
study in the given field can be modelled dynamically. Describing a complex system, ranging from 
agricultural production to comprehensive organic waste treatment to modelling the application of 
products of the treatment processes as soil conditioner, ODYM’s capability of handling complex 
problems has been demonstrated. Hitherto, the modelling framework has not been extensively 
tested independent of the developers in available scientific literature. The thesis delivers strong 
evidence of ODYM’s potential to solve problems researchers encounter with popular software like 
STAN. Advanced uncertainty evaluation via MCS, using the log-normal distribution as an improved 
approximation standard compared to the normal distribution, as well as dynamic analysis are 
considered essential methods for MFA research. It has been shown that ODYM is a framework fully 
supporting these approaches. 

The ODYM modelling framework is well defined, allows for complex dynamic MFA, and is open and 
even designed for adaptions and improvements, which makes it a highly suitable tool for organic 
waste management, but also possibly for any other field of application. 

For the template, made-up values for the import flows and transfer coefficients were used. In order 
to demonstrate the applicability of the template using real-life data, the calculation was repeated with 
actual total wheat production data of Germany from 2019 until 2021 (Destatis, 2022). The soil 
conditioner potential of the waste treatment products was estimated, assuming that 50 % of the total 
wheat harvest was treated in the presented case study system. Considering the residue to product 
ratio of wheat (RPR = 1.75) , as applied by Koopmans & Koppejan (1997), supplied by Bhattacharya 
et al. (1993), flows from the “Harvesting” process to the “Food” process (F_1_2 as wheat grain flow 
or product flow) and to the “Straw collection/distribution” process (F_1_3 as wheat straw flow or 
residue flow) can also be adjusted to more realistic data (see case study MFA system Figure 7, 
p. 16). Additionally, the total organic carbon content of wheat straw (TOC = 0.438) can also be used 
to refine the carbon substance level of the flows (Cayuela et al., 2010). Adopting the remaining data 
from the case study, the following violin plots for the potential carbon inflow to (Figure 15) and the 
stock in (Figure 16, p. 29) the soil are obtained: 

 

Figure 15: Violing plot carbon inflow to soil using adjusted data (NMC =10,000) 
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Figure 16: Violin plot carbon stock in soil using adjusted data (NMC = 10,000) 

 

Import flows, TC data and associated calculations can be viewed in Annex B (p. 42). Although this 
example is still simplified and requires many assumptions (e.g. same carbon content of wheat grain 
and straw, transfer coefficients for material distribution in the waste treatment process still made-
up), the procedure shows that the template is very flexible and can be used for real-life data. 

 

2. User-friendliness 

User-friendliness in the context of the thesis’ aim includes two aspects: 

a. Simple adaptation of the template for similar purposes 
b. Handling of the template accessible for researchers without advanced Python knowledge 

 
a. It has been discussed before that ODYM is designed for adaptation. The biODYM modelling 

template has actually been developed by combining modified code of the tutorials with 
customized programming products. Additionally, Jupyter Notebook is used, which is itself a 
comprehensible way to distribute code, and extensive documentation of the template is 
provided. Thus, the adaptability of the template for similar purposes is assessed to be high. 
It is not a tool that automatically delivers a ready solution when inserting any data, but it is 
an approach that presents procedures and capabilities of ODYM in the context of organic 
waste management, providing several practical extensions. Users who would like to apply 
biODYM are suggested to compare the offered features with their research requirements and 
determine if the case study calculations resemble the intended purpose. For instance, 
dynamically modelling other organic waste treatment systems including FOMPs, along with 
tracing certain substances while simultaneously keeping track of the good level and 
evaluating the uncertainty of the analysis via MCS can be performed with simple adaptation 
measures fitting the procedures to the researchers' needs.  

If relevant features are missing, users can create their own case study template, taking 
advantage of biODYM and the explanatory notes of the development process and the ODYM 
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documentation. If the research includes, for example, comparing different facilities applying 
the same treatment process (e.g. anaerobic digestion described as FOMP) and evaluating 
efficiency differences, ODYM’s feature of comparing regions could be applied, defining one 
region as a plant to be investigated (provided that each plant system consists of the exactly 
the same process flows). Comparing regions is subject of the ODYM Tutorial No. 3. (Pauliuk 
& Heeren, 2022), and with the help of biODYM and its first order model approach, a case 
study template for this case could be designed straightforwardly. 

b. Using and adapting the tool is assessed to be easy for researchers with advanced Python 
knowledge, and even for those with only basic Python or general programming skills. The 
accessibility for researchers without programming skills is ambiguous. The main reason for 
this is the lack of a graphical user interface, as it is implemented into STAN. The option to 
use buttons, input fields, and the drawing environment of STAN hides the programming 
procedures users are forced to interact with in software without an interface. Although 
adaptation procedures are considered to be good to learn, the mere absence of a graphical 
user interface may have a deterrent effect. It is hard to imagine framing ODYM in a tool that 
can be controlled with a graphical user interface without restricting its essential flexibility. 
Acknowledging the general accessibility of Python and the simplicity of ODYM compared to 
the complexity of the MFA problems that can be solved with it, researchers without 
programming knowledge may benefit greatly from working their way into the basics of 
scientific coding by investing a reasonable amount of time. Once ODYM’s procedures have 
been understood, standardized dynamic analysis becomes accessible as a quick and 
profound MFA tool. If performing complex dynamic MFA is a frequent field of activity, the 
benefits of working with ODYM clearly outweigh the costs of learning how to handle the 
framework. 
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6 Conclusion 
The biODYM modelling template has been developed to assess the option to perform dynamic MFA 
with ODYM in the field of organic waste management. The open science framework was extended 
by adding a first order model approach, a Monte-Carlo-Simulation, and a layout suggestion for 
interactive Sankey diagrams. To present the procedures, a case study was modelled. The template 
enables dynamic analysis with advanced uncertainty evaluation, providing essential features for 
advanced MFA studies that are not yet included in popular MFA software. Consequently, ODYM’s 
suitability for the intended purpose is evaluated to be high.  

The template presents a working process for adapting the framework for practical application as well 
as suggesting general and more specific extensions. This has not been done before independent of 
the developers in available scientific literature. Researchers can either directly apply biODYM or be 
inspired to create their own template if more features are needed. Documentation by means of 
practical comments in the code, visualization of the structure via UML use case diagrams, a quick-
start guide and procedure explanations are meant to support easy usage of the template.  

Dynamic MFA is a complex process and no implementable method for equipping the biODYM 
modelling template with a graphical user interface for a more intuitive and simple application has 
been found. Users always need to modify the code to fit it to their research questions and thus, 
programming knowledge or time to learn Python-basics to use ODYM-based dynamic MFA 
successfully is required. Future work should include extension refinement and exploring ways to 
better integrate them into the original modelling framework. Likewise, profound model validation, and 
extensive testing of the template should be performed. To further increase the availability of ODYM 
in organic waste management, further templates could be developed addressing additional 
application scenarios and use cases.  
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Annex A 
Case study input data 

Table 2: Import data into system on biomass (good) and carbon level 

Year F_0_1 [t] 

Biomass Carbon 

2020 100 50 

2021 110 55 

2022 120 60 

2023 130 65 

2024 140 70 

2025 150 75 

2026 160 80 

2027 170 85 

2028 180 90 

2029 190 95 

2030 200 100 

2031 10 5 

2032 220 110 

2033 230 115 

2034 240 120 

2035 250 125 

2036 260 130 

2037 270 135 

2038 280 140 

2039 290 145 

2040 300 150 
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Table 3: Case study transfer coefficients year 2020–2029 (same for biomass and carbon level) 
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Table 4: Case study transfer coefficients year 2030–2040 (same for biomass and carbon level) 
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Annex B 
Adjusted input data for the MFA presented in the discussion chapter 5 (p. 22) 

Table 5: Import data into system on biomass (good) and carbon level (assuming treatment of 50 % of the 
total wheat production of Germany from 2019 until 2021 (Destatis, 2022) and using the total organic carbon 

content of wheat straw (TOC = 0.438) (Cayuela et al., 2010) for calculating the carbon flow) 

Year F_0_1 [t] 

Biomass Carbon 

2020 11,531,300 5,050,709.4 

2021 11,086,050 4,855,689.9 

2022 10,729,600 4,699,564.8 

 

 

Table 6: Transfer coefficients year 2019–2021 (same for biomass and carbon level, only TC_1_2 and 
TC_1_3 changed compared to the template’s case study, see calculations in this Annex on p. 43) 
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Calculating adjusted transfer coefficients using residue to product ratio of wheat (RPR) 
(Bhattacharya et al., 1993) 

 𝑅𝑃𝑅 = 1.75  

 𝑅𝑃𝑅 =
𝐹_1_3
𝐹_1_2

 (9) 

Converting Equation (9) leads to Equation (10) 

 𝐹_1_3 = 𝐹_1_2 ∙ 𝑅𝑃𝑅 (10) 

TC_1_2 can then be calculated according to: 

 𝑇𝐶_1_2 =
𝐹_1_2

𝐹_1_2 + 𝐹_1_3
 (11) 

 
Combining Equation (10) and (11) lead to: 

 𝑇𝐶_1_2 =
1

1 + 𝑅𝑃𝑅
 (12) 

 𝑇𝐶_1_2 = 0.36  

 
TC_1_3 results to: 

 𝑇𝐶_1_3 = 1 − 𝑇𝐶_1_2 (13) 

 𝑇𝐶_1_3 = 0.64  
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Annex C 
 

 

 
 

biODYM quick-start guide

Part I Qualitative model

0 
Lo

ad
 p

ac
ka

ge
s

ODYM framework

ODYM_classes

ODYM_functions

dynamic_stock_model

Packages (ODYM)

sys, os

numpy

pandas

matplotlib.pyplot

pickle

pylab

Packages (biODYM)

plotly.graph_objects

ipywidgets

xlsxwriter

scipy.stats

Notes

- Load ODYM via local path.

- Install packages via pip terminal
and load via "import" in notebook.

1 
D

efi
ni

tio
n 

of
 s

ys
te

m
 a

nd
 re

le
va

nt
 a

sp
ec

ts

System aspect Time

Dimension = Time (t)

Items = MyYears

System aspect Element

Dimension = Element (e)

Items = Good, Carbon

IndexTable

Define Processes (P)

Name

ID ProcessList

Define Flows (F)

P_Start & P_End

Indices  FlowDict

Define Stocks (S)

P_Res

Type

Indices StockDict

Notes

- Model initiating routines are very
rigid, so no need to change a lot.
If more Elements (e.g. Nitrogen)
or more years should be
considered, they can easily be
added. 

- System components (P, F, S)
have no values yet but empty
arrays. 

- ODYM data base is the model
foundation. The further
procedures always refer to it.

ODYM data base
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Part II Quantitative model

2 
D

at
a 

in
pu

t i
nt

o 
m

od
el

Parameters

Importflows

Transfer coefficients (TC)

Uncertainty ParameterDict

biODYM 
input_data_template.xlsx

Notes

- All input data gets stored as
parameters.

- Consistency_check() is an
ODYM-inherent function that
allows to confirm general system
definition consistency.

ODYM data base

Consistency_Check()

Dimension consistency

Process index consistency

Flow  value array consistency

3 
M

FA
 C

al
cu

la
tio

ns

FOMP

BioParameters

Values

Uncertainty

P_Res

Manual data input 

BioParameterDict

FOMP calculations

Notes

- FOMP = First order model process

- Qualitative data is combined with
quantitative data to calculate results.

- FOMP procedure is separated from
ODYM procedure. After calculations,
FOMP results are then used to
calculate remaining non-FOMP F and
S and all results are finally stored in
the ODYM data base.

- MassBalance() is an ODYM function
that checks if mass balance principle
is fulfilled.

ODYM data base

extract

ParameterDictBioParameterDict

MFA solution (w/o FOMP)

Importflows from ParameterDict

Other F and S by TC calculations
independent of FOMP

MFA solution (w/ FOMP)

Remaining F and S by TC calculations

MassBalance()

Balance dimensions
(time steps x process x element)

Balancing errors

Monte-Carlo-Simulation (MCS)

Generate pseudo-random values
MC_BioParameterDict

MCS

Repeat previous calculations
with MC dictionaries

MC_FlowDict_absSTD

MC_FlowDict MC_StockDict

Notes

- MCS in essence repeats calculations,
but with 10.000 values per parameter
according to log-norm. probability
density 

- MCS results are stored separated from
ODYM data base

- absSTD = Absolute standard deviation

MC_StockDict_absSTD

Manual data input 

MCS Parameters

Model runs = 10.000

Probability density function = log-norm.

MC_ParameterDict
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Part III Conclude MFA
4 

Pr
es

en
ta

tio
n 

of
 re

su
lts

ODYM data base

Static Results presentation

System results simple plots

MCS simple plots and violin plots

MC_FlowDict_absSTD

MC_FlowDict MC_StockDict

MC_StockDict_absSTD

Sankey diagram data

Processes

Flows

Colours

Notes

- System results can be displayed as
static simple plots or interactive Sankey
diagram.

- For interactive Sankey diagrams,
relevant data is converted into
applicable form from ODYM data base.

- MCS results can be displayed as
simple plots or violin plots.

- All results can be exported to Excel.

Excel export

System results

MCS results

Interactive Sankey diagram

sankey_diagram_results()

Legend

Data input
Data definition

Most important items

biODYM extension
Activity

Most important items

ODYM

 Storage

data input

used

storage


