Fitting human excreta into a circular nutrient bioeconomy -

Future scenarios, retailer perspectives, and research accessibility in Sweden

Geneviève S. Metson Jennifer McConv genevieve.metson@liu.se Ant

Jennifer McConville, Robin Harder, Nils-Hassan Quttineh, Anton Sundblad, Roozbeh Feiz

Agriculture requires nutrients

Losses of nitrogen & phosphorus lead to eutrophication

Sweden contributes 11% of P load to Baltic Sea

Climate change will complicate things

Today's project co-authors

Future land use and biobased Sweden

R. Feiz

N.H. Quttineh

A. Sundblad

d S. Mohr

G Metson

End of Wastewater

B. Macura

R. Harder G Metson

J. McConville

S. Johannesdottir

Human excreta nutrients in sustainable food systems

A vision for Sweden's food future

Less animals, more vegetables

Metson et al. (2022)

As we become more efficient in agriculture and reduce meat consumption then...

Human excreta becomes essential to circular agriculture

Fewer biogas plant locations but similar locations

Take home messages – future land use

'Demand side' measures mean there is less to go around, but make recycling nutrients **more** valuable

Nutrients from human excreta could make up a larger share of resources

Places with the biggest potential for biogas plants today may still be **the same** ones tomorrow – investing in infrastructure makes sense

Regions with few potential plants needed may need more detailed planning before moving ahead

Human excreta nutrients in sustainable food systems

Without social acceptance our options for recycling will be limited

More on current state of sanitation in Sweden: https://www.naturvardsverket.se/Documents/publikationer6400/978-91-620-8809-5.pdf?pid=22471

Safety (no contamination) is a top priority

Farmers also need to know nutrient content

Sustainability & acceptance also matter

Take home messages – farmers and wastewater

Safety is a key priority across actor groups

Farmers also need clear nutrient content

Desire for regulatory support, decision support, infrastructure, and knowledge sharing

Difficult for people to name actors to take responsibility for changes needed

Agreement of a need to engage with farmers and food sectors

Human excreta nutrients in sustainable food systems

Swedish retailers could be a key actor

Few actors purchase and stock shelves Affects farmers and consumers

Which product is more acceptable?

Surveyed 127 food retailers (stores)

McConville et al. (under review) City and Environment Interactions

Further away from human food and more 'processed'

McConville et al. (under review) City and Environment Interactions

@gmetson

Take home messages – retailer survey

Not negative to reuse generally, but no specific goals on nutrient recycling in sustainability strategies

Perceived risk is central to acceptance

Lack of knowledge hindered people from answering

Human excreta nutrients in sustainable food systems

END-OF-WASTEWATER 2020-2023

Slides by Robin Harder

WHY EGESTABASE?

IMAGINE ...

you are interested in ...

FINDING EVIDENCE IS NOT TRIVIAL

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2019, VOL. 49, NO. 8, 695–743 https://doi.org/10.1080/10643389.2018.1558889

OPEN ACCESS

Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products

Robin Harder (D^{a,b,c}, Rosanne Wielemaker^d, Tove A. Larsen (D^e, Grietje Zeeman^e, and Gunilla Öberg (D^c)

Johannesdottir *et al. Environ Evid* (2020) 9:24 https://doi.org/10.1186/s13750-020-00207-7

Environmental Evidence

SYSTEMATIC MAP

Open Access

What evidence exists on ecotechnologies for recycling carbon and nutrients from domestic wastewater? A systematic map

Solveig L. Johannesdottir^{1*}, Biljana Macura², Jennifer McConville³, Dag Lorick², Neal R. Haddaway^{2,4,5}, Agnieszka Karczmarczyk⁶, Filippa Ek², Mikołaj Piniewski⁷, Marta Księżniak⁸ and Paweł Osuch⁷

WHAT WE SEEK TO ACHIEVE

on nutrient recovery and reuse from human excreta and domestic wastewater

- from research and practice

Slides by Robin Harder

WHAT WE HAVE DONE SO FAR

Slides by Robin Harder

Macura et al. (2021)

THE EVIDENCE EXPLORER

Slides by Robin Harder

PATHWAYS

PATHWAYS

Hide pathways			Reset all
Urine Yellowwater	Liquid Fraction	Treatment	Recycling Fertilizer
Feces Brownwater	Organic Fraction	Concentration	Nutrient Solution (Macronutrient)
Excreta Blackwater	Inorganic Fraction	Biological Decomposition	Nutrient Solution (Multinutrient)
Sewage Wastewater	Not defined	Thermal Decomposition	Precipitate (Monomineral)
Not defined		Bioelectrochemical System	Precipitate (Multimineral)
		Selective Crystallization	Ash
		Sorption and Ion Exchange	Organic Material
		Stripping	Protein
		Membrane Separation	Sorbent
		Biomass and Protein Growth	Synthetic Fertilizer
		Wet Chemical Extraction	Not defined
		Fertilizer Production	
		Not defined	

	This is a beta version. The evid	dence explorer currently uses an incomplete dataset and visualise	ations are experimental.			
暨 Q. Publication search	😵 Publication heatmap	Publication map	🗎 Case study map			
				Help & search tips		
Search	2391 documents	S		Sort by year - order desc -		
Abstract, DOI, Authors	Vasiljev et al. (2022) Drying fresh human urine in m	agnesium-doped alkaline substrates: Capture of free amr	monia, inhibition of enzymatic urea hydrolysis & minimis	ation of chemical urea hydrolysis. Chemical		
Торіс	Engineering Journal Show details					
Agricultural Use	Chia et al. (2021) Sustainable membrane technolog	y for resource recovery from wastewater: Forward osmo	osis and pressure retarded osmosis. Journal of Water Pri	ocess Engineering Show details		
Case Examples Concepts Recovery Products	Lubensky (2021) Pilot scale experiments for ammo <u>Show details</u>	nium recovery from sludge liquor at a municipal waste w	vater treatment plant. Journal of Sustainable Developme	nt of Energy, Water and Environment Systems		
Recovery Technology Sustainability Assessment	 Recovery Technology Sustainability Assessment Carneiro et al. (2021) Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a null Research Show details 					
User Acceptance	Boniardi et al. (2021) Assessment of a simple and r	replicable procedure for selective phosphorus recovery fre	om sewage sludge ashes by wet chemical extraction an	d precipitation. Chemosphere Show details		
Process (not yet implemented)	Naserian et al. (2021) Qualitative investigation of se	ewage sludge composting: effect of aerobic/anaerobic pr	retreatments. Arabian Journal of Geosciences Show de	tails		
Nitrification Granulation	Park et al. (2021) Prediction of adequate pH and Mg	g2+ dosage using an empirical MgO solubility model for s	struvite crystallization. Environmental Technology and In	nnovation Show details		
Heat Treatment Hydrolysis	Huang et al. (2021) Pushing the organic loading rate Environment <u>Show details</u>	e in electrochemically assisted anaerobic digestion of bla	ackwater at ambient temperature: Insights into microbial	l community dynamics. Science of the Total		
Heavy Metal Deposition Hydrothermal Carbonization (HTC)	Wen et al. (2021) Contactless membrane distillation	n for effective ammonia recovery from waste sludge: A ne	ew configuration and mass transfer mechanism. Journa	al of Membrane Science Show details		
Hydrothermal Liquefaction (HTL)	Liao et al. (2021) Enhancing phosphorus recovery a	and dewaterability of waste activated sludge for combiner	d effect of thermally activated peroxydisulfate and struv	ite precipitation. Sustainability (Switzerland)		

VIEWS

	This is a be	This is a beta version. The evidence explorer currently uses an incomplete dataset and visualisations are experimental.								
먤 Q. Publication search	88 Publication heat	пар	0	Publication map		Cas	e study map			
Search	Row	Colum	in							Help & search tips
Abstract, DOI, Authors	Source stream	- Reco	very technolo	gy 👻						
Topic Agricultural Use	Recovery technology	>		a won	ornostion otherwal	ustalization and	lor.	centration	and Protein	al Emaction duction
Case Examples Concepts Recovery Products	Source stream	Treatment	Concentratio	Biocorros Thernal De	Biogent cel	cure Ci Sophange	Stripping	Mendane Biona	with weithernu	Fettilizer Total
 Recovery Technology 	Urine Yellowwater	127	41		- 54 136	66	31	8 33		440
Sustainability Assessment User Acceptance	Feces Brownwater	8	1	9 1						19
Process (and a land	Excreta Blackwater	45	12	75 7	3 16	2		1 11		167
Process (not yet implemented)	Sewage Wastewater	26	3	153 605	30 572	98	56	49 139	66	1 1,766
Nitrification Granulation Heat Treatment Hydrolysis	Total	206	57	237 613	87 723	166	86	58 183	66	1 2,391

Heavy Metal Deposition

Hydrothermal Carbonization (HTC)

Hydrothermal Liquefaction (HTL)

VIEWS

Slides by Robin Harder

VIEWS

Slides by Robin Harder

New design and complete dataset coming

- How to keep it alive?
 Open-source vs Machine learning
- Still difficult to integrate practical examples
- Pedagogical component

CONCENTRATED KNOWLEDGE ON NUTRIENTS

Easily find scientific papers on nutrient recirculation using our tool

VISION

Robin Harder Biljana Macura Geneviève Metson Solveig Johannesdottir Jennifer McComville Rosanne Wielemaker

contact@endofwastewater.net www.endofwastewater.net www.egestabase.net

PROBLEM

Knowledge on the recovery and reuse of nutrients in human excreta and wastewater is scattered across different sources and rapidly growing. It is difficult to navigate existing knowledge and keep track of new findings.

recirculate nutri	ents from hur	nan excreta ai	nd wastewate	r to agricultur	re
		×	See	\odot	
find publications	identify gaps	follow trends	map research	explore options	

the scientific literature on innovative and sustainable solutions to

To create an online knowledge brokering tool that helps actors explore

USEFUL TO YOU? LET US KNOW!

SE

Human excreta nutrients in sustainable food systems

Facilitating student access to up-to-date research

Metson and McConville (in prep) Frontiers in Education

No one right answer!

Link access to information to SDGs

BEING -	2 THINKING -	3 RELATING –	Collaborating	5 ACTING -
Self		and the World		
Inner compass	Critical thinking	Appreciation	Communication skills	Courage
Integrity and Authenticity	Complexity awareness	Connectedness	Co-creation skills	Creativity
Openness and	Perspective skills	Humility	Inclusive mindset	Optimism
Learning Mindset	Sense-making	Empathy and Compassion	and intercultural competence	Perseverance
Self-awareness	Long-term		Trust	
Presence	orientation and Visioning		Mobilization skills	

Searchine by Stehen Latinerrations

@gmetson

Metson and McConville et al. (in prep) Frontiers in Education

Take home messages – Student engagement

One tool cannot be everything to everyone

But designing for compatibility can help

Real case studies help go from idea to comprehension

May be one pathway towards acceptance (not only knowledge)

Human excreta nutrients in sustainable food systems

Must consider multiple actors + resources

Reading from the talk

Increasing effective nutrient reuse with biogas Sweden

- Metson, Feiz , Quttineh and Tonderski. 2020. Optimizing transport to maximize nutrient recycling and green energy recovery *Resources, Conservation & Recycling: X* 9–10 100049
- Metson, Sundblad, Feiz, Quttineh and Mohr. 2022. Swedish food system transformations: Rethinking biogas transport logistics to adapt to localized agriculture *Sustainable Production and Consumption* 29 370–86

Sustainable food systems in Sweden

- Karlsson, Röös, Sjunnestrand, Pira, Larsson, Andersen, Sørensen, J., Veistola, Rantakokko, Manninen, Brubæk. 2017 Future Nordic Diets: Exploring ways for sustainably feeding the nordics. Nordic Council of Ministers TemaNord 2017:566, Rosendahls, Denmark.
- Karlsson, Carlsson, Lindberg, Sjunnestrand, Röös. 2018. Designing a future food vision for the Nordics through a participatory modeling approach. Agronomy for Sustainable Development 38, 59.

Acceptance of recycled fertilizers

- Lundin, Metson, McConville, Westling. 2021. Recirkulering av näringsämnen mellan stad och land- vad vill gödselanvändaren ha? Aktivitetsrapport- tematisk workshop. IVL Svenska Miljöinstitutet rapportnummer <u>B 2414</u>
- McConville, Metson, Persson. Under review. Acceptance of human excreta-derived products in Swedish grocery stores. City and Environment Interactions

Increasing access to information

- <u>https://www.endofwastewater.net/</u>
- Macura, Thomas, Metson, McConville, Johannesdottir, Seddon, Harder. 2021. Technologies for recovery and reuse of plant nutrients from human excreta and domestic wastewater: a protocol for a systematic map and living evidence platform. Environmental Evidence 10(20)
- Metson and McConville (in prep). Beyond infrastructure: How the use of digital tools & serious games can improve sanitation education. To be submitted to Frontier in Education and/or as an open-access module for teachers

Thank you for your time

Please ask questions, it's the best part of a talk

Geneviève S. Metson genevieve.metson@liu.se

S. All Mr.

Jennifer McConville, Robin Harder, Nils-Hassan Quttineh, Anton Sundblad, Roozbeh Feiz